OGC Standards - some case studies

by

kaiinos ${ }^{\circ 0 \circ}$

Simple Feature Specification intro

Simple Feature Specification - geometry methods

Dimension ():Integer—The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension. This specification is restricted to geometries in two-dimensional coordinate space.

GeometryType ():String —Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member. The name of the instantiable subtype of Geometry is returned as a string.

SRID ():Integer—Returns the Spatial Reference System ID for this Geometry.
Envelope():Geometry-The minimum bounding box for this Geometry, returned as a Geometry. The polygon is defined by the corner points of the bounding box ((MINX, MINY), (MAXX, MINY), (MAXX,MAXY), (MINX, MAXY), (MINX, MINY)).

AsText():String —Exports this Geometry to a specific well-known text representation of Geometry.
AsBinary():Binary—Exports this Geometry to a specific well-known binary representation of Geometry.
IsEmpty():Integer —Returns 1 (TRUE) if this Geometry is the empty geometry. If true, then this Geometry represents the empty point set, \varnothing, for the coordinate space.

IsSimple():Integer —Returns 1 (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency. The description of each instantiable geometric class will include the specific conditions that cause an instance of that class to be classified as not simple.

Simple Feature Specification - spatial analysis

Distance(anotherGeometry:Geometry):Double—Returns the shortest distance between any two points in the two geometries as calculated in the spatial reference system of this Geometry.

Buffer(distance:Double):Geometry—Returns a geometry that represents all points whose distance from this Geometry is less than or equal to distance. Calculations are in the Spatial Reference System of this Geometry.

ConvexHull():Geometry—Returns a geometry that represents the convex hull of this Geometry.
Intersection(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set intersection of this Geometry with anotherGeometry.

Union(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set union of this Geometry with anotherGeometry.

Difference(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set difference of this Geometry with anotherGeometry.

SymDifference(anotherGeometry:Geometry):Geometry—Returns a geometry that represents the point set symmetric difference of this Geometry with anotherGeometry

Geometries - linestring

Geometries - multilinestring

A MultiLineString is a MultiCurve whose elements are LineStrings.

Geometries - polygon

Geometries - multi polygon

(1)

(2)

(3)

(4)

Spatial databases

Spatial databases - spatial relationships

Polygon/Polygon

(a)

(b)

LineString/LineString
(a)

Polygon/Point

Polygon/Polygon

Polygon/LineString

Polygon/Polygon

Overlap

Creation of geometry

Geometry Type	SQL Text Literal Representation	Comment
Point	'POINT (10 10)'	a Point
LineString	${ }^{\prime}$ LINESTRING ($\left.1010,2020,3040\right)$ '	a LineString with 3 points
Polygon	$\begin{aligned} & \text { 'POLYGON }((1010,1020,2020, \\ & 2015,1010)) \text {, } \end{aligned}$	a Polygon with 1 exterior ring and 0 interior rings
Multipoint	'MULTIPOINT (10 10, 20 20) '	a Multipoint with 2 point
MultiLineString	$\begin{aligned} & \text { MULTILINESTRING }\left(\begin{array}{ll} 10 & 10,2020 \end{array}\right), \\ & (1515,3015)) \text {, } \end{aligned}$	a MultiLineString with 2 linestrings
MultiPolygon	$\begin{aligned} & \text { 'MULTIPOLYGON } \\ & \quad((1010,1020,2020,2015,1010)), \\ & ((6060,7070,8060,6060)), \end{aligned}$	a MultiPolygon with 2 polygons
GeomCollection	````GEOMETRYCOLLECTION (POINT (10 10), POINT (30 30), LINESTRING (15 15, 20 20))'```	a Geomet ryCollection consisting of 2 Point values and a LineString value

Create geometry from WKT

```PointFromText ( pointTaggedText String, SRID Integer): Point```	Construct a Point
LineFromText ( lineStringTaggedText String, SRID Integer) : LineString	Construct a LineString
$\begin{aligned} & \text { PolyFromText ( } \\ & \text { polygonTaggedText String, } \\ & \text { SRID Integer): Polygon } \\ & \hline \end{aligned}$	Construct a Polygon
MPointFromText (multiPointTaggedText String, SRID Integer): MultiPoint	Construct a MultiPoint
MLineFromText ( multiLineStringTaggedText String, SRID Integer): MultiLineString	Construct a MultiLineString
MPolyFromText ( multiPolygonTaggedText String, SRID Integer): MultiPolygon	Construct a MultiPolygon
```GeomCollFromTxt ( geometryCollectionTaggedText String, SRID Integer): GeomCollection```	Construct a GeometryCollection

References

References
OGC Refernce Model - http://www.opengeospatial.org/standards/orm
Open GIS Simple Feature Specification

Hand-on

Load sample data into postgres and try the functions listed in the presentation.

Case studies

Western ghats SDI

Western ghats SDI

OGC Webservices

All the spatial data has been made available using WMS and WFS webservices as per OGC standards. Registered Users can download data or use the services to perform analysis.

Analysis

Web Analytics prototyping for Richness Index has been done and integrated into this SDI. User can visualize the clusters of various species present in the Western ghats on the Web GIS interface.

Desktop Access

Data residing in the SDI can accessed from Desktop tools such as QGIS, gVSIG. The WMS and WFS urls can be used to access the data of the SDI.

Open Source

In developing this SDI Free and Open Source Software tools for Geoinformatics (FOSS4G) like Geoserver, PostgreSQL/PostGIS, Openlayers have been used.

Crowdsourcing

Along with the SDI, Kriti - an Android based mobile App, has been developed to enable users to post spatial data directly to the SDI. This unique feature enables dynamic updation of this SDI.

Interoperability

As this SDI is developed using standard compliant
libraries, this SDI can be deployed in all major operating system platforms such as Windows, Linux, MacOS etc. Also this SDI can be customized as a cloud service due to the underlying architecture.

Lake management and monitorina svstem

Subbasin:
Phase:
Ayacut area (hectare):

Administrative
ology Structures

Work Progress Monitoring

Krishna
ω
167.18

Search engine

Mobile apps

Dashboards

