OGC API - Features

Winter School 2022

GI SE Geospatial Information

Science & Engineering
HUB

-xoqTeh FerT fore uat srfiritrehy

/)

Ms. Prajwalita J. Chavan
T, Bombay

Overview

* About OGC API — Features

* Resources

* Introduction

* Encoding

* Requirements classes ‘core’

* API landing page

* API Definition

* Conformance declaration

* Feature Collection

* Features

* Feature

* Requirements classes for encodings
* Requirements classes for ‘HTML’

* Requirement Class “GeoJSON’

* Requirement Class “GML”

* Requirement Class "Map Background"
* Security

Copyright © 2022 IIT, Bombay

OGC API - Features

e Publication Date: 2022-05-11

* OGC API Features provides API building blocks to create, modify and
query features on the Web.

* the OGC API Features standards offer direct, fine-grained access to the data
at the feature (object) level.

* This standard specifies discovery and query operations that are
implemented using the HTTP GET method.

* WFS uses a Remote-Procedure-Callover-HTTP architectural style using
XML for any payloads.

Copyright © 2022 IIT, Bombay

Resources

Resource

Landing page

Conformance declaration

Feature collections
Feature collection
Features

Feature

Path

/conformance

/collections
/collections/{collectionId}

/collections/{collectionId}/items

HTTP
method

GET

GET

GET

GET

GET

/collections/{collectionId}/items/{featureld} GET

Copyright © 2022 IIT, Bombay

Document reference

7.2 API landing page

7.4 Declaration of
conformance classes

7.13 Feature collections
7.14 Feature collection
7.15 Features

7.16 Feature

Introduction

1. Main requirements class: Core
2. requirements class: CRS
3. requirements class: Filtering

4. requirements class: CRUD

Copyright © 2022 IIT, Bombay

1. Main requirements class: Core

The Core does not mandate a specific encoding or format for representing
features or feature collections:

« HTML

* GeoJSON

* Geography Markup Language (GML), Simple Features Profile, Level O
* Geography Markup Language (GML), Simple Features Profile, Level 2
* OpenAPI Specification 3.0

* Other encoding

Copyright © 2022 IIT, Bombay

Encodings

* HTML i1s the core language of the World Wide Web. A server that supports
HTML will support browsing the data with a web browser

* GeoJSON is a commonly used format that 1s simple to understand and well
supported by tools and software libraries.

* GML supports more complex requirements than GeoJSON. GML 1s more
complex to handle for both servers and clients.

Copyright © 2022 IIT, Bombay

Reguirements Class "Core"

* The entry point 1s a Landing page (path /)

* The Landing page provides links to:
 the API definition (link relations service-desc and service-doc),
 the Conformance declaration (path /conformance, link relation
conformance), and
* the Collections (path /collections, link relation data)
(YAML: writing configuration file)

Requirement1 /req/core/root-op

A The server SHALL support the HTTP GET operation at the path /.

Copyright © 2022 IIT, Bombay

API landing page

Requirement 2

A

/req/core/root-success

A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

The content of that response SHALL be based upon the OpenAPI

3.0 schema landingPage.yaml and include at least links to the
following resources:

* the API definition (relation type 'service-desc' or 'service-doc')
» /conformance (relation type '‘conformance’)

» /collections (relation type 'data’)

Copyright © 2022 IIT, Bombay

Schema for Landing Page

type: object
required:
- 1inks
properties:
title:
type: string
description:
type: string
links:
type: array
tems:
fref:
http://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/1ink.yaml

Copyright © 2022 IIT, Bombay

Landing Page Response Document

{
"title": "Buildings 1in Bonn",
"description”: "Access to data about buildings in the city of Bonn via a Web API
that conforms to the 0GC API Features specification.",
"1Tinks": [
{ "href": "http://data.example.org/",
"rel": "self", "type": "application/json", "title": "this document" },
{ "href": "http://data.example.org/api”,
"rel": "service-desc", "type":
"application/vnd.oai.openapi+json;version=3.0", "title": "the API definition" },
{ "href": "http://data.example.org/api.html",
"rel": "service-doc", "type": "text/html", "title": "the API documentation"
e

{ "href": "http://data.example.org/conformance”,
"rel": "conformance", "type": "application/json", "title": "0GC API
conformance classes implemented by this server" },
{ "href": "http://data.example.org/collections"”,
"rel": "data", "type": "application/json", "title": "Information about the
feature collections” }

]
¥

Copyright © 2022 IIT, Bombay

API definition

Requirement 3

A

Permission 1

A

Requirement 4

A

/req/core/api-definition-op

The URIs of all API definitions referenced from the landing page
SHALL support the HTTP GET method.

/per/core/api-definition-uri

The API definition is metadata about the API and strictly not part
of the API itself, but it MAY be hosted as a sub-resource to the base
path of the API, for example, at path /api. There is no need to
include the path of the API definition in the API definition itself.

/req/core/api-definition-success

A GET request to the URI of an API definition linked from the
landing page (link relations service-desc or service-doc) with an
Accept header with the wvalue of the link property type SHALL
return a document consistent with the requested media type.

Copyright © 2022 IIT, Bombay

Conformance declaration

Requirement 5

A

Requirement 6

A

/req/core/conformance-op

The server SHALL support the HTTP GET operation at the path
/conformance.

/req/core/conformance-success

A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

The content of that response SHALL be based upon the OpenAPI

3.0 schema confClasses.yaml and list all OGC API conformance
classes that the server conforms to.

Copyright © 2022 IIT, Bombay

Feature Collections

Requirement 11 /req/core/fc-md-op

A The server SHALL support the HTTP GET operation at the path
/collections.

Requirement 12 /req/core/fc-md-success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

B The content of that response SHALL be based upon the OpenAPI
3.0 schema collections.yaml.

Copyright © 2022 IIT, Bombay

_Feature Collections

Requirement 17

A

Requirement 18

A

/req/core/sfc-md-op

The server SHALL support the HTTP GET operation at the path
/collections/{collectionId}.

The parameter collectionId is each id property in the feature
collections response (JSONPath: $.collections[*].1id).

/req/core/sfc-md-success

A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

The content of that response SHALL be consistent with the
content for this feature collection in the /collections response.
That is, the values for id, title, description and extent SHALL be
identical.

Copyright © 2022 IIT, Bombay

Features

Requirement 19

A

Requirement 21

A

/req/core/fc-op

For every feature collection identified in the feature collections
response (path /collections), the server SHALL support the HTTP
GET operation at the path /collections/{collectionId}/items.

The parameter collectionId is each id property in the feature
collections response (JSONPath: $.collections[*].1id).

/req/core/fc-limit-response-1

The response SHALL not contain more features than specified by
the optional limit parameter. If the API definition specifies a
maximum value for limit parameter, the response SHALL not
contain more features than this maximum value.

Only items are counted that are on the first level of the collection.
Any nested objects contained within the explicitly requested
items SHALL not be counted.

Copyright © 2022 IIT, Bombay

Feature

Requirement 32

A

[req/core/f-op

For every feature in a feature collection (path
/collections/{collectionld}), the server SHALL support the HTTP
GET operation at the path
/collections/{collectionId}/items/{featureld}.

The parameter collectionld is each id property in the feature
collections response (JSONPath: $.collections[*].1id). featureld is

a local identifier of the feature.

Copyright © 2022 IIT, Bombay

Requirements Class "HTML"

Requirement 35

A

Requirement 36

A

/req/html/definition

Every 200-response of an operation of the server SHALL support
the media type text/html.

/req/html/content

Every 200-response of the server with the media type text/html
SHALL be a HTML 5 document that includes the following
information in the HTML body:

 all information identified in the schemas of the Response
Object in the HTML <body>, and

e all links in HTML <a> elements in the HTML <body>.

Copyright © 2022 IIT, Bombay

Requirements Class "GeoJSON"

Requirement 37 [req/geojson/definition

A 200-responses of the server SHALL support the following media
types:

» application/geo+json for resources that include feature
content, and

* application/json for all other resources.

Copyright © 2022 IIT, Bombay

Requirements Class "Geography Markup Language (GML), Simple Features Profile,
Level 0"

Requirement 39 /req/gmlsf0/definition

A 200-responses of the server SHALL support the following media
types:
« application/gml+xml; version=3.2;

profile=http://www.opengis.net/def/profile/ogc/2.0/gml-sf0
for resources that include feature content,

* application/xml for all other resources.

Copyright © 2022 IIT, Bombay

Requirement Class "Map Background™

Resource

Landing page
Conformance declaration
Feature collections

Feature collection

Features

Feature

Path XML root element

/ core:LandingPage

/conformance core:ConformsTo

/collections core:Collections

/collections/{collectionld} core:Collections, with just one
entry for the collection
collectionld

/collections/{collectionld}/item sf:FeatureCollection
S

/collections/{collectionId}/item substitutable for
s/{featureld} gnl:AbstractFeature

Copyright © 2022 IIT, Bombay

Security

Avaluable resource 1s the Common Weakness Enumeration (CWE)
registry

* The CWE is organized around three views
* Research: facilitates research into weaknesses and can be
leveraged to systematically 1dentify theoretical gaps within CWE.

 Architectural: organizes weaknesses according to common
architectural security tactics. It 1s intended to assist architects in
identifying potential mistakes that can be made when designing
software.

* Development: organizes weaknesses around concepts that are
frequently used or encountered in software development.

Copyright © 2022 IIT, Bombay

Security: Multiple Servers
* The implementation of an API may span a number of
servers.
* Each server is an entry point into the API.
* Without careful management, information which 1s not

accessible though one server may be accessible through
another

Copyright © 2022 IIT, Bombay

Path Manipulation

* A transaction operation adds new or updates existing resources on the
API. This capability provides a whole new set of tools to an attacker.

 GET: Validate all GET URLSs to make sure they are not trying to access
resources they should not have access to.

* PUT and POST: APIs which support transaction operations should validate

that an update does not contain any malignant content prior to exposing it
through the API.

Copyright © 2022 IIT, Bombay

2. Requirement Class for CRS

Requirement 1 /req/crs/crs-uri

Each CRS supported by a server SHALL be referenceable by a uniform resource identifier (i.e. a URI).

Recommendation 1 /rec/crs/crs-format-model

Servers that implement this extension SHOULD be able to recognize and generate CRS identifiers with the
following format model:

http://www.opengis.net/def/crs/{authority}/{version}/{code}

In this format model, the token {authority} is a placeholder for a value that designates to authority responsible
for the definition of this CRS. Typical values include "EPSG" and "OGC".

The token {version} is a placeholder for the specific version of the CRS definition or 0 for un-versioned CRS
definitions.

The token {code} is a placeholder for the authority’s code for the CRS.

Copyright © 2022 IIT, Bombay

Requirement Class for global list of CRS identifiers

"1links™: [
{ "href": "http://data.example.org/collections.json",
"rel": "self", "type": "application/json", "title": "this document" },
{ "href": "http://data.example.org/collections.html”,
"rel™: "“alternate", "type": "textihtml™, "title™: "this decument as HIML™ },
{ "href": "http://schemas.example.org/1.0/buildings.xsd",
"rel®™: “deseribedby", “type": “application/xml™, "title™: "GML application schema for

Acme Corporation building data" },
{ "href": "http://download.example.org/buildings.gpkg".,

"rel": "enclosure", "type": "application/geopackage+sqlite3", "title": "Bulk download
(GeoPackage)", "length": 472546 }
1.
rers™: [
"http://www.opengis.net/def/crs/0GC/1.3/CRS84",
"http://www.opengis.net/def/crs/EPSG/0/4326",
"http://www.opengis.net/def/crs/EPSG/0/3857",
"http://www.opengis.net/def/crs/EPSG/0/3395"
1.,
"collections™: [
|
"id™: “bonn buildings™,
*title": “Bonn Buildings"™,
“description”: "Buildings in the ‘city of Bonn.",
"extent™: f

“spatial"™: {
"bbex™: [[7:07; 50:63 . 7:22; 50:78 7] 1]
T

Copyright © 2022 IIT, Bombay

Output format considerations

HTML: The HyperText Markup Language or HTML i1s the

standard markup language for documents designed to be displayed in a web
browser. It can be assisted by technologies such as Cascading Style
Sheets(CSS) and scripting languages such as JavaScript. Web

browsers receive HTML documents from a web server or from local storage
and render the documents into multimedia web pages HTML describes the
structure of a web page semantically and originally included cues for the

appearance of the document.
<] DOC 1T YPE html>

< htmlil >

<body >

<hil1>My First Heading</hl1l>
<p>My first paragraph.</p>

</ body >
</ html >

Copyright © 2022 IIT, Bombay

Output format considerations

*XML: Extensible Markup Language (XML) is a markup language and file
format for storing, transmitting, and reconstructing arbitrary data

It defines a set of rules for encoding documents in a format that 1s
both human-readable and machine-readable

<?xXml version="1.0" encoding="UTF-8"?>
<fruits>
<item>
<id>1eee</id>
<name>Apple</name>
<price>4</price>
<quantity>133</quantity>
</item>
</fruits>

Copyright © 2022 IIT, Bombay

Output format considerations

*GML: GML or Geography Markup Language 1s an XML based encoding standard
for geographic information developed by the OpenGIS Consortium (OGC). GML
1s concerned with the representation of the geographic data content. Of course we
can also use GML to make maps. Like any XML encoding, GML represents

geographic information in the form of text.

<Feature fid="142" featureType="school" Description="A middle school"=
<Polygon name="extent" srsName="epsg:27354"=
<LineString name="extent" srsName="epsg:27354">
<CData>
491888.999999459,5458045.99963358 491904.999999458,5458044.999633
491908.999999462,5458064.99963358 491924.999999461,5458064.99963 3
491925.999999462,5458079.99963359 491977.999999466,5458120.9996336
491953.999999466,5458017.99963357 </CData>
</LineString>
</Polygon=
</Feature=

58
58

Copyright © 2022 IIT, Bombay

Output format considerations

*YAML:

originally Yet Another Markup Language

‘Now YAML Ain't Markup Language

It 1s a human-readable data-serialization language

*It 1s commonly used for configuration files and in applications where data 1s
being stored or transmitted

*YAML targets many of the same communications applications as Extensible
Markup Language (XML) but has a minimal syntax which intentionally
differs from Standard Generalized Markup Language (SGML)

*It uses both Python-style indentation to indicate nesting, and a more
compact format

Copyright © 2022 IIT, Bombay

Output format considerations

receipt: Oz -—Ware Purchase Invoice
date: 2012 -8 -0
customer :
First_ name: Dorothy
fFamily name: Gale
items:

- parTtT_no AATSS
descrip wWater Bucket (Filled)
price: % E2R B
quantity: a

— ‘Ppart no
descrip

El1e28
High Heeled ""Ruby™ Slippers

siFe: s

pr-ice: 2 B = SN 4

gquantity: % &
bill-to: Sidoeoel

street: |
123 Tornado Alley
Suite 16
C e K 5T East Centerville
state: KS

Copyright © 2022 IIT, Bombay

Output format considerations

*JSON: JavaScript Object Notation (JSON) has been gaining in popularity for encoding
data in Web-based applications.

*JSON consists of sets of objects described by name/value pairs.

*JSON is human readable and easily parseable. However, JSON is schemaless.

*JSON and GeoJSON documents do not include an explicit definition of the structure of
the JSON objects contained in them. Therefore, this standard 1s based on a normative
JSON-LD context which allows each property to be explicitly defined as a URI.
Furthermore, the JSON encoding 1s defined using JSON Schema which allows
validation of instances against these schemas.

{"employees”:[
{ "firstName":"John", "lastName":"Doe" },
{ "firstName":"Anna", "lastName":"Smith" },

{ "firstName":"Peter"”, "lastName":"Jones" }

1}

Copyright © 2022 IIT, Bombay

Output format considerations

*GeoJSON:
*GeoJSON 1s a format for encoding a variety of geographic data structures.
GeoJSON supports the following geometry
types: Point, LineString, Polygon, MultiPoint, MultiLineString,
and MultiPolygon. Geometric objects with additional properties
are Feature objects. Sets of features are contained by FeatureCollection objects.

o

\ r.ﬂ -t

"
v
U

-
-

Copyright © 2022 IIT, Bombay

3. Filtering

Filter: Filtering Expresssion
*Filter-lang: Filtering Language

*Filter-crs: CRS for Filtering

Copyright © 2022 IIT, Bombay

Filter: Filtering Expresssion

The Filter requirements class defines a general parameter, filter, whose
value 1s a filter expression to be applied when retrieving resources. This is
necessary to determine which resources should be included 1n a result set.

Requirement 4

A

/req/filter/filter-param

The HTTP GET operation on the path that fetches resource instances (e.g.
/collections/{collectionId}/items) SHALL support a parameter filter

with the following characteristics (using an OpenAPI Specification 3.0
fragment):

name: filter
in: query
required: false
schema:

type: string
style: form
explode: false

Copyright © 2022 IIT, Bombay

*Filter-lang: Filtering Language

Any predicate language that can be suitably expressed as the value of an HTTP
query parameter may be specified as the value of the filter parameter. In order to
specify that specific language that 1s being used, this clause defines

Requirement 5

A

/req/filter/filter-lang-param

The HTTP GET operation on the path that fetches resource instances (e.g.
/collections/{collectionId}/items) SHALL support a parameter filter-

lang with the following characteristics (using an OpenAPI Specification 3.0
fragment):

name: filter-lang
in: query
required: false

schema:
type: string
enum:
- 'cql2-text’
- 'cql2-json’

default: 'cql2-text®
style: form

Copyright © 2022 IIT, Bombay

*Filter-crs: CRS for Filtering

Its parameter defined in this clause allows clients to assert which CRS is
being used to encode geometric values in a filter expression.

Requirement 6 [req/filter/filter-crs-wgs84

A [f a HTTP GET operation on the path that fetches resource instances (e.g.
/collections/{collectionId}/items)includesa filter parameter, butno
filter-crs parameter, the server SHALL process all geometries in the filter
expression using CRS84 (for coordinates without height) or CRS84h (for
coordinates with ellipsoidal height) as the coordinate reference system (CRS).

Copyright © 2022 IIT, Bombay

4. CRUD

Resource endpoint HTTP method

POST PUT PATCH DELETE
/collections/{collectionId}/1items create n/a n/a n/a
[collections/{collectionId}/1tems/{resourceld} n/a replace update delete

Copyright © 2022 IIT, Bombay

Requirements Class "Create/Replace/Delete

The HTTP POST method is used to add a new resource instance to
a collection.

The HTTP PUT method is used to replace an existing resource in a
collection with a replacement resource with the same resource
identifier.

Finally, the HTTP DELETE method is used to remove a resource
from a collection and PATCH method to update

Requirement 1 /req/core/methods

A A server SHALL implement one or more of the methods HTTP POST, PUT and/or
DELETE for each resource.

B A server SHALL declare which methods are supported for each resource via the
HTTP OPTIONS method.

Copyright © 2022 IIT, Bombay

Create: Sequence diagram

Client Server

POST <resources endpoint> HTTP/1.1
Content-Type: <media type of resource representation>

... Body contains representation of the resource ...

HTTP/1.1 201 Created
Location: <resource endpoint>

Copyright © 2022 IIT, Bombay

Replace : Sequence diagram

Client Server

PUT <resource endpoint> HTTP/1.1
Content-Type: <media type of updated resource representation>

... Body contains representation of new resource content ...

Copyright © 2022 IIT, Bombay

Delete : Sequence diagram

(lient Server

|
| DELETE <resource endpoint> HTTP/1.1

Copyright © 2022 IIT, Bombay

Update : Sequence diagram

Client Server

PATCH <resource endpoint> HTTP/1.1
Content-Type: <media type of body>

... Body contains a document describing the changes to make
to parts of the specified resource ...

Copyright © 2022 IIT, Bombay

Hands-on

Download and install MiraMon Map Server that implements support for multiple
OGC API standard. Such as:

OGC API —Map
OGC API — Features
OGC API - Tiles

Copyright © 2022 IIT, Bombay

MiraMon Map Server

* The Centre for Ecological Research and Forestry Applications (CREAF) at the
Autonomous University of Barcelona (UAB) deployed an instance of the
MiraMon Map Server that implements support for multiple OGC API standard.

* The server 1s implemented as a CGI application encoded in C language as a part

of the MiraMon suite and 1s interoperable with other vendors’ clients Geographic
Information System (GIS) & Remote Sensing (RS)

Copyright © 2022 IIT, Bombay

MiraMon [1]: World administrative boundaries [ESRI]

File Edit View Zoom Information Tools Help

Maharashtra
512 (m)

C, R: 7699, 2097 <> X, Y: 76.62, 20.09 <> Lon, Lat: 76" 37" 4.7682", 20° 5' 29.0924" <> RGB: [143]0 1300 E 1:28523095

21°C , o _ ’ 12:11
Sunny i= R search = D B E T 0 ¥ © a @ N DO 202 o

Information from structured vector file

C\L.]\Mon'\est_mon'\admin98_wgs84P.dbf

Administrative Boundaries - First Level (ESRI)
C:\Maps\FavoriteCollections\Mon'\est_mon\admin38_wgs84.pol
X,Y: 75.69, 19.21

Lon, Lat: 75° 41" 35.8138", 19° 12' 45.0644" (inside)

Perimeter (projection): 37.88° Link
Area (projection): 26.94°2
Perimetre del poligon (el-lipsoide): 4075740.42 m (4075.74 km)

Area del poligon (el-lipsoide): 213025419044.39 m= (31302541.90 ha)

First-level administrative unit

Federal Information Processing Standards code: IN16
Global Mapping International code: IND-MHR Fields |

Copy ——
7671, 2124 <> X, Y: 75.69, 19.21 <> Lon, Lat: 75° 41' 35.8138", 19° 12' 45.0644" <> RGB: [144] 01320 E 1:142641880

& ZPCM 4 L Search Il | & @ - . v b D (Q © 3 N 3 ~ Q) =

MiraMon [1]: ETOPO2 - 2 minute Worldwide Bathymetry/Topography [NGDC]

File Edit View Zoom Information Tools Help

ceBe] o e e|@ o e Lo k@i %

C, R: 502, 1901 <> X, Y: -163.27, 26.64 <> Lon, Lat: -163° 16’ 0.0012", 26° 38' 30.0012" <> RGB: [13] 36 25 E 1:140014544

| .) D .) ENG 12:10
am Pser L) , \ ' ' > W CR ~'W 9% 50, 0

THANK YOU!

prajwalita.chavan@gmail.com
prajwalita@iitb.ac.in

#OGCAPI

Copyright © 2022 IIT, Bombay

