

\“_‘ﬂ\‘ﬂ' ™~
T 1 ANS \I'J

Every sensor in the ground
is in constant communication

with nearby relays. ((([]

oOGC
Copyright © 2016 Open Geospatial Consortium

STLISWIL, (]
ﬁ o S B ELP NG7 B A N
»

oOGC
Copyright © 2016 Open Geospatial Consortium

OGC”

| tailio

(b j—

Copyright © 2016 Open Geospatial Consortium

®

Copyright © 2016 Open Geospatial Consortium

-

oGC
Copyright © 2016 Open Geospatial Consortium

OGC”

Smarter ma
for asthma ai

FIND OUT HO

Copyright © 2016 Open Geospatial Consortium

OGC”

N 4
— 't

R e

Copyright © 2016 Open Geospatial Consortium

oGC

Copyright © 2016 Open Geospatial Consortium

loT Value Chain

G ystem

Network | Integrator/

Operator Application
)\ Provider

Copyright © 2016 Open Geospatial Consortium

Location Technology Evolution

Alberta

Region-Centric Feature-Centric Human-Centric Device-Centric

Geospatial Geospatial Geospatial Geospatial
Information Information Information Information

Copyright © 2016 Open Geospatial Consortium

Device-Centric
Geospatial
Information

number of
users

Human-Centric
Geospatial
Information

Feature-Centric

Geospatial _ _
Information Region-Centric
Geospatial
Information
£
?? Pedestrian Car Navigation/ Urban Planning/ ~ Size Of space
<im Navigation Web Map Civil Engineering

oGC
Copyright © 2016 Open Geospatial Consortium

System of Systems

* The real potential of the Internet of Things

=

Network Effect:
@ The value of a network is
proportional to the square of the
number of users of the system

%ﬁ% (n2).
6

Copyright © 2016 Open Geospatial Consortium

Today's loT Silos

Application A Application C Application D

9
;

=|®

Network A Network D
|€- o
Thing A Thing D

|D

Copyright © 2016 Open Geospatial Consortium

“77% of surveyed loT
experts claimed that
Interoperability is the
biggest challenge currently
facing the Internet of Things

JJ

Copyright © 2016 Open Geospatial Consortium

What is loT Interoperability?

* Interoperability is the ability of two or more (loT) systems or
components to exchange information and to use the
information that has been exchanged (IEEE) .

« Two components X and Y are interoperable if X can send
requests R for services to Y, based on a mutual
understanding of R by X and Y, and if Y can similarly
return mutually understandable responses S to X
(Brodie, 1993).

Copyright © 2016 Open Geospatial Consortium

OGC SensorThings API

® ® Q opengeospatial/sensorthir X Steve

€« C' () GitHub, Inc. [US] https://github.com/opengeospatial/sensorthings Dy

®

GitHub Making location count.

OGC SensorThings API

The OGC SensorThings APl is an OGC standard specification for providing an open and unified way to interconnect loT
devices, data, and applications over the Web. The SensorThings API is an open standard, builds on Web protocols and the
OGC Sensor Web Enablement standards, and applies an easy-to-use REST-like style. The result is to provide a uniform way
to expose the full potential of the Internet of Things.

7

Standard Specification

An PDF version of the standard will be available on OGC web site soon. An HTML version of the standard will be available at
THIS LINK SOON.

About

« Editor: Dr. Steve Liang

¢ Co-editors: Tania Khalafbeigi, Dr. Chih-Yuan Huang
| ..githubusercontent.com/.../687474703a2f2f7777772e6f70656e67656f7370617469616c2e6f72672f7075622f7777772f66696c65732f4f47435f4c6f676f5f32445f426c75655f785f30... |

Copyright © 2016 Open Geospatial Consortium

Someone at FOSS4G N.A.

Copyright © 2016 Open Geospatial Consortium

Case Study - Smart Citizen Sensors

Steve Liang

} N i /oy .
Loafiet | © OpenSireethap, Tiles courtesy of Humanitarian OpenStreetMap Team

Case Study - Arctic Citizen Sensors

Community Data Get Started v

X\
| N

What is it

ece /[Arctic Citizen Sensors
e« C ‘U arctic-citizen-sensors.sensorup.com

(&A sensorup

Arctic Citizen Sensors

A platform that enables all citizens in Canada’s north to use open source sensors and build innovative Internet of

Things applications.

GET STARTED

There are unclaimed devices. Do

they belong to you?

Case Study - Citizen Sensing in Taiwan

I~ T
(e
v

A

Air Quality in Taiwan

Working with the Maker
community, and using
SensorThings APl to
provide more than 500
near real-time air
quality sensors

SensorThings API

* An open, geospatial-enabled and unified way to
interconnect the Internet of Things (loT) devices, data, and
applications over the Web

 REST Principles

« CREATE, READ, UPDATE, and DELETE (i.e., HTTP
POST, GET, PATCH, and DELETE) loT data and metadata

« Efficient JSON encoding
« MQTT (Message Queuing Telemetry Transport) protocol

* Follows flexible OASIS OData protocol and URL
conventions

Copyright © 2018 Open Geospatial Consortium

Client-server Separation: The application which is requesting the resource is
called the client, and the application which has the resource is called the server.
When the client requests a request to the server, the server sends a response to
the client. The server can't initiate a request to the client. In a RESTful API, the
client and server are always kept independent of each other. This ensures that both
the client and the server can be scaled independently.

Stateless: In a RESTful API, each request needs to contain the data that is

necessary to process it. Servers aren’t allowed to store any data related to the 2
client. No session or authentication state is stored on the server. If the client e §
requires authentication, then the client needs to authenticate itself before sending a |
request to the server. A

Cacheable: In REST APIs, the resources should be able to cache themselves
either on the client or on the server. When a client requests a resource from the
server, the response from the server will contain the information on whether the
resource can be cached or not and for how long. The main idea of caching is to
improve the performance of the client by reducing the bandwidth required to load
the resource.

Layered System: In REST APIs, there can be multiple intermediaries between the
client and the server. It isn’t always necessarily true that the client connects directly
to the server and requests a resource. There can be multiple systems in between
them that are responsible for handling security, traffic, balancing the load,
redirection, etc. The client or the server doesn’t have any information about how
many systems are in between them.

Uniform Interface: All requests and responses in a REST API should follow a
common protocol. This allows the applications to evolve independently. The client
and server can interact with each other in a single language irrespective of the
architecture that they are based upon.

User agent (1)
prmT = S
Application Message ~ |
State (4) processor (8)
Cache (3) I | COD engine (5) ‘:9’

‘Representation (7)

-(Link, Link2, ...}

Intermediary component (2)

[ter }
processor (8)

A,

A

I Cache (3)]

il

processor (8)

Message | §

Resource (6) J

Origin server (1)

Differences between SOS and SensorThingsAPI

* OGC SensorThings API can interoperate with SOS at
both the data level and service interface level.

Encoding
Architectural Style
Binding

Insert new Sensors and
Observations

Deleting Existing Sensors

Pagination

Pub/Sub Support
Updating Properties of Existing
Sensors or Observations

Deleting Existing Observations

Linked Data Support

JSON

Resource Oriented Architect

Supporting

REST .
real-time
HTTP POST °
SOS specific interfade: SenS| ng
HTTP DELETE DeleteSensor() appl |Cat| ons

Stop/Sskip/$SnextLink

MQTT and SensorThings MQTT Better
Extension Not supported developer
HTTP PATCH and JSON PATCH Not supported experience

HTTP DELETE Not supported

JSON-LD Not supported

Part 1. Sensing Part

* Provides a standard
way to manage and
retrieve observations | | b
and metadata from == I
heterogeneous loT o | suman

Datastream Observation
+name: C ing +phenor!|enonTime: TM_Object
sensor systems R |uoren s A W
= +observationType: ValueCode +result: Any))
0.+ |+unitOfMeasurement: JSON_Object 1 0.+ | *resultQuality: DQ_Element[0..*]
b dArea: GM_Envelope[0..1) +validTime: TM_Period[0..1]
pher Time: TM_Period[0..1) +parameters: NamedValue[0..%]
+resultTime: TM_Period[0..1]
o +observations
: +thing
.
* Designed based on o -
+name: CharacterString *things "
+description: CharacterString 1 +featureOfinteres
+properties: JSON_Object[0..1] «CodeList»
th IS O/O G C 0..* +histori i ValueCode FeatureOfinterest
e 0.* | +things - +name: CharacterString
HistoricalLocation +description: CharacterString

+encodingType: ValueCode

Observation and g g ey

Location 0..* +historicalLocations

+name: CharacterString +location
bl rirlenps

Measurement (O&M) [mmpewees [
model

Copyright © 2018 Open Geospatial Consortium

Part 2: Tasking Part

* Provides a standard way for parameterizing - also called tasking - of
taskable loT devices, such as individual sensors and actuators

Task

+taskingParameters: SWE_COMMON_JSON_Object
+creationTime: TM_Instance

+tasks +taskingCapability

Actuator

+name: CharacterString
+description: CharacterString
+ecodingType: ValueCode
+metadata: ANY

+properties: JSON_Object[0..1]

+actuator

[

0.*

+taskingCapabilities

TaskingCapability

0.* 1

+taskingParameters: SWE_COMMON_JSON_Object

+name: CharacterString
+description: CharacterString
+properties: JSON_Object[0..1]

0._.*| +taskingCapabilities

1 | +thing

Thing

+name: CharacterSttring
+description: CharacterString
+properties: JSON_Object[0..1]

Copyright © 2018 Open Geospatial Consortium

From Sensinsg g]a!‘t
r

[OGC 15-07

SensorThings APl MQTT - Read

 Topic: entity collection name
— Example: v1.0/Things, v1.0/Datastreams(id)/Observations

« Payload: SensorThings JSON entity

| SensorThings

L
|
|
|
|

MQTT Subscribe to

Entity Collection/NavigationLink I
4 Entity pushed via MQTT PR H"E:t'i’tCYJST— l
¢ Entity pushed via MQTT —' 'EF mf:?ST

Copyright © 2018 Open Geospatial Consortium

SensorThings APl MQTT- Create
Observations/Tasks

» Topic: Resource Path to Observations
— Example: v1.0/Observations, v1.0/Datastreams(id)/Observations

» Payload: Valid Observations JSON entity

| SensorThings |

———

MQTT Subscribe to
Datastreams(id)/Observations

¢—— Observation pushed via MQTT ¢ HTTP POST
Observation

4—— Observation pushed via MQTT HLTE POST
Observation
jee— MQTT Publish
Create(Entity Observatnon
—————- Observation pushed ,_ ___ "

via MQTT

Copyright © 2018 Open Geospatial Consortium

Lesson Learned — Read

« Each RESTful API has a potential for MQTT binding to
receive updates for a resource collection

* The topic would be the resource GET URL
* The payload would be the same as content of HTTP GET

* Whenever there is a new resource, it will be published to
the resource GET URL topic

MQTT Broker i RESTful Service

' '
» subscribe to a resource URL
" '

' HTTP POST
! aresource to resource URL* Create

SUCEesS > the resource

L PR ;.{'.Z'.'.'.‘.'.'.'.‘.'.‘.'.'.'.'.‘.'.'.Z‘.'.'
fSriziiiiiiiioiiiia: = publish the resource to
1 the created resource i the resource URL

Copyright © 2018 Open Geospatial Consortium

Lesson Learned - Create

For any RESTful API, to create a resource, MQTT can be an option just like

HTTP POST

The topic will be same as the POST topic
The payload will be the same as POST payload
The service would subscribe to the topics
When it receives the payload, it uses the same process as POST for creating

the resource

}

MQTT Broker

RESTful Service

)
E‘subscribe to a resource URL

Publish
a resource to
resource URL Topic

the resource

L e >
'

e e mmmmm e m i m i m
i the created resource

Copyright © 2018 Open Geospatial Consortium

Create
the rescurce

